Part Number Hot Search : 
FST16 1206S C283C MB86H01 25353U02 L1024 B4110 20730
Product Description
Full Text Search
 

To Download PM300RL1A060 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  may 2009 1 mitsubishi PM300RL1A060 flat-base type insulated package PM300RL1A060 feature inverter + brake + drive & protection ic a) adopting new 5th generation full-gate cstbt tm chip b) the over-temperature protection which detects the chip sur- face temperature of cstbt tm is adopted. c) error output signal is possible from all each protection up- per and lower arm of ipm. d) compatible l-series package. ? 300a, 600v current-sense and temperature sense igbt type inverter monolithic gate drive & protection logic detection, protection & status indication circuits for, short- circuit, over-temperature & under-voltage (p-f o available from upper arm devices) ul recognized application general purpose inverter, servo drives and other motor controls package outlines dimensions in mm 10.5 6-m5 nuts 110 0.5 78 0.5 +1 -0.5 135 122.1 6.05 11.7 26 26 40.5 18 11 71.5 66.5 6-2 3-2 10 19 13 label 9 5 1 10 10 3.25 2- 2.5 4- 5.5 mounting holes 19- 0.5 3-2 3-2 33.6 34.7 24.1 20 20 21.5 18.7 p wv u n b 30.15 11 (13) (screwing depth) 13 110 90.1 6.05 4 1. vupc 2. ufo 3. up 4. vup1 5. vvpc 6. vfo 7. vp 8. vvp1 9. vwpc 10. wfo 11. wp 12. vwp1 13. vnc 14. vn1 15. br 16. un 17. vn 18. wn 19. fo te rm inal code
mitsubishi PM300RL1A060 flat-base type insulated package may 2009 2 v ces i c i cp p c t j collector-emitter voltage collector current collector current (peak) collector dissipation junction temperature v d = 15v, v cin = 15v t c = 25 c (note-1) t c = 25 c t c = 25 c (note-1) v a a w c maximum ratings (tj = 25 c, unless otherwise noted) inverter part symbol parameter condition ratings unit 600 300 600 833 ?0 ~ +150 internal functions block diagram v ces i c i cp p c i f v r(dc) t j brake part collector-emitter voltage collector current collector current (peak) collector dissipation fwdi forward current fwdi rated dc reverse voltage junction temperature v d = 15v, v cin = 15v t c = 25 c (note-1) t c = 25 c t c = 25 c (note-1) t c = 25 c t c = 25 c v a a w a v c symbol parameter condition ratings unit 600 150 300 520 150 600 ?0 ~ +150 v fo i fo control part v ma 20 20 supply voltage input voltage fault output supply voltage fault output current symbol parameter condition ratings unit applied between : v up1 -v upc , v vp1 -v vpc v wp1 -v wpc , v n1 -v nc applied between : u p -v upc , v p -v vpc , w p -v wpc u n ?v n ?w n ?b r -v nc applied between : u fo -v upc , v fo -v vpc , w fo -v wpc f o -v nc sink current at u fo , v fo , w fo , f o terminals 20 20 v d v cin v v v n u n w p v wp1 wf o v wpc v p v vp1 vf o v vpc u p v up1 uf o v upc br bnwvup fo 1.5k 1.5k 1.5k 1.5k v nc v n1 w n gnd in fo vcc gnd si out ot gnd in fo vcc gnd si out ot gnd in fo vcc gnd si out ot gnd in fo vcc gnd si out ot gnd in fo vcc gnd si out ot gnd in fo vcc gnd si out ot gnd in fo vcc gnd si out ot *: tc measurement point is just under the chip.
mitsubishi PM300RL1A060 flat-base type insulated package may 2009 3 parameter symbol supply voltage protected by sc supply voltage (surge) storage temperature isolation voltage condition v cc(surge) t stg v iso ratings v cc(prot) 400 500 ?0 ~ +125 2500 unit v c v rms v v d = 13.5 ~ 16.5v inverter part, t j = +125 c start applied between : p-n, surge value 60hz, sinusoidal, charged part to base, ac 1 min. 2.35 2.35 2.8 2.0 0.8 1.0 2.3 1.0 1 10 min. typ. max. collector-emitter saturation volt age collector-emitter cutoff current ? c = 300a, v d = 15v, v cin = 15v (fig. 2) t j = 25 c t j = 125 c electrical characteristics (tj = 25 c, unless otherwise noted) inverter part parameter symbol condition v ce(sat) i ces v ec t on t rr t c(on) t off t c(off) limits 0.3 1.75 1.75 1.7 0.8 0.4 0.4 1.0 0.3 t j = 25 c t j = 125 c fwdi forward voltage switching time v d = 15v, v cin = 0v ? 15v v cc = 300v, i c = 300a t j = 125 c inductive load (fig. 3,4) v ce = v ces , v d = 15v (fig. 5) v d = 15v, i c = 300a v cin = 0v, pulsed (fig. 1) to ta l system v ma v s unit 0.15 0.23 0.24 0.39 0.023 c/w r th(j-c)q r th(j-c)f r th(j-c)q r th(j-c)f r th(c-f) inverter igbt part (per 1 element) (note-1) inverter fwdi part (per 1 element) (note-1) brake igbt part (note-1) brake fwdi upper part (note-1) case to fin, (per 1 module) thermal grease applied (note-1) symbol condition unit min. junction to case thermal resistances thermal resistances contact thermal resistance * if you use this value, r th(f-a) should be measured just under the chips. (note-1) tc (under the chip) measurement point is below. parameter limits t yp. max. up igbt 25.2 57.1 vp wp un vn wn br fwdi 25.2 46.8 igbt 58.8 57.1 fwdi 58.8 46.8 igbt 88.8 57.1 fwdi 88.8 46.8 igbt 37.2 28.4 fwdi 37.2 38.8 igbt 70.8 28.4 fwdi 70.8 38.8 igbt 100.8 28.4 fwdi 100.8 38.8 igbt 1 1.5 27.6 di 7.5 61.0 arm axis x y (unit : mm) y x bottom view
mitsubishi PM300RL1A060 flat-base type insulated package may 2009 4 5v/ s 2v gnd 15v 3.5 3.5 mounting part screw : m5 main terminal part screw : m5 symbol parameter mounting torque mounting torque w eight condition unit n ?m n ?m g limits min. t yp. max. 2.5 2.5 3.0 3.0 800 mechanical ratings and characteristics v ce(sat) i ces v ec v ma min. typ. max. v collector-emitter saturation vo ltage fwdi forward voltage collector-emitter cutoff current ? c = 150a, v cin = 15v, v d = 15v (fig. 2) t j = 25 c t j = 125 c unit parameter symbol condition limits 2.35 2.35 2.8 1 10 1.75 1.75 1.7 t j = 25 c t j = 125 c brake part v d = 15v, i c = 150a v cin = 0v, pulsed (fig. 1) v ce = v ces , v d = 15v (fig. 5) v d = 15v, v cin = 15v applied between : u p -v upc , v p -v vpc , w p -v wpc u n ?v n ?w n ?b r -v nc i d c v ma ms 16 4 1.8 2.3 12.5 0.01 15 ma circuit current input on threshold voltage input off threshold voltage short circuit trip level short circuit current delay t ime over temperature protection supply circuit under-voltage protection fault output current minimum fault output pulse width v th(on) v th(off) sc t off(sc) ot ot (hys) uv uv r i fo(h) i fo(l) t fo t rip level hysteresis t rip level reset level control part 1.2 1.7 600 300 135 1 1.5 1.0 parameter symbol condition max. min. typ. unit limits 8 2 1.5 2.0 0.2 20 12.0 12.5 10 1.8 (note-2) fault output is given only when the internal sc, ot & uv protections schemes of either upper or lower arm device operat e to protect it. detect temperature of igbt chip ?0 t j 125 c v d = 15v, v cin = 15v (note-2) v d = 15v (note-2) v s v n1 -v nc v *p1 -v *pc inverter part brake part a ?0 t j 125 c, v d = 15v (fig. 3,6) v d = 15v (fig. 3,6) recommended conditions for use recommended value unit condition symbol parameter v applied across p-n terminals applied between : v up1 -v upc , v vp1 -v vpc v wp1 -v wpc , v n1 -v nc (note-3) applied between : u p -v upc , v p -v vpc , w p -v wpc u n ?v n ?w n ?b r -v nc using application circuit of fig. 8 supply voltage control supply voltage input on voltage input off voltage pwm input frequency 400 15.0 1.5 0.8 9.0 20 v cc v cin(on) v cin(off) f pwm v d v v khz (note-3) with ripple satisfying the following conditions: dv/dt swing 5v/ s, variation 2v peak to peak t dead arm shoot-through blocking t ime for ipms each input signals (fig. 7) 2.0 s
mitsubishi PM300RL1A060 flat-base type insulated package may 2009 5 precautions for testing 1. before applying any control supply voltage (v d ), the input terminals should be pulled up by resistors, etc. to their corre- sponding supply voltage and each input signal should be kept off state. after this, the specified on and off level setting for each input signal should be done. 2. when performing ?c?tests, the turn-off surge voltage spike at the corresponding protection operation should not be al- lowed to rise above v ces rating of the device. (these test should not be done by using a curve tracer or its equivalent.) p, (u,v,w,b) u,v,w,b, (n) u,v,w,b, (n) v d (all) in fo in fo v d (all) v cin (0v) ic v v p, (u,v,w,b) v cin (15v) ic fig. 7 dead time measurement point example fig. 1 v ce(sat) test fig. 2 v ec, ( v fm ) test 0v 1.5v 1.5v 1.5v 2v 2v 2v 0v t t t dead t dead t dead 1.5v: input on threshold voltage vth(on) typical value, 2v: input off threshold voltage vth(off) typical value ipm?input signal v cin (upper arm) ipm?input signal v cin (lower arm) 10% 90% trr irr tr td(on) tc(on) tc(off) td(off) v cin ic v ce 10% 10% 10% 90% tf (ton = td(on) + tr) (toff = td(off) + tf) fo p n n c s c s u,v,w vcc vcc ic ic v d (all) v d (all) p u,v,w v cin v cin v cin ( 15v ) v cin ( 15v ) fo fig. 3 switching time and sc test circuit fig. 4 switching time test waveform a) lower arm switching signal input (upper arm) signal input (lower arm) signal input (upper arm) signal input (lower arm) b) upper arm switching v cin fig. 5 i ces test fig. 6 sc test waveform sc trip short circuit current toff(sc) v d (all) u,v,w,b, (n) p, (u,v,w,b) a pulse v ce v cin (15v) ic fo in fo constant current fo fo
mitsubishi PM300RL1A060 flat-base type insulated package may 2009 6 notes for stable and safe operation ; design the pcb pattern to minimize wiring length between opto-coupler and ipms input terminal, and also to minimize the stray capacity between the input and output wirings of opto-coupler. connect low impedance capacitor between the vcc and gnd terminal of each fast switching opto-coupler. fast switching opto-couplers: t plh , t phl 0.8 s, use high cmr type. slow switching opto-coupler: ctr > 100% use 4 isolated control power supplies (v d ). also, care should be taken to minimize the instantaneous voltage charge of the power supply. make inductance of dc bus line as small as possible, and minimize surge voltage using snubber capacitor between p and n terminal. use line noise filter capacitor (ex. 4.7nf) between each input ac line and ground to reject common-mode noise from ac line and improve noise immunity of the system. out si ot ot ot ot ot ot ot gnd gnd in vcc u v w b n p m if + : interface which is the same as the u-phase out si gnd gnd in vcc out si gnd gnd in vcc gnd gnd in fo fo fo fo vcc out si gnd gnd in fo vcc out si gnd gnd in fo vcc vwp1 wp vwpc un vn vn1 wn vnc 1.5k 1.5k 1.5k 1.5k fo vvp1 vp vvpc 0.1 4.7k 1k 0.1 0.1 20k 20k 20k 10 10 10 20k 10 0.1 vfo wfo ufo vup1 up vupc br if if if 5v if out si gnd gnd in fo vcc v d v d v d v d fig. 8 application example circuit si out
mitsubishi PM300RL1A060 flat-base type insulated package may 2009 7 performance curves (inverter part) 0 0.5 1.0 1.5 2.0 t j = 25 c 13v v d = 17v output characteristics (typical) collector current i c (a) collector-emitter voltage v ce (v) 15v 0 50 100 200 150 250 300 350 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 v d = 15v t j = 25 c t j = 125 c collector-emitter saturation voltage v ce(sat) (v) collector-emitter saturation voltage (vs. ic) characteristics (typical) collector current i c (a) 050 100 200 300 150 250 350 10 1 10 0 10 2 5 7 10 3 2 3 5 7 2 3 5 7 2 3 v d = 15v t j = 25 c t j = 125 c collector recovery current ? c (a) emitter-collector voltage v ec (v) diode forward characteristics (typical) 0 0.5 1.0 1.5 2.0 collector-emitter saturation voltage (vs. v d ) characteristics (typical) collector-emitter saturation voltage v ce(sat) (v) control voltage v d (v) 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 12 13 14 15 16 17 18 i c = 300a t j = 25 c t j = 125 c 10 1 23 57 10 2 23 57 10 3 23 57 10 0 10 ? 10 0 2 3 4 5 7 10 1 2 3 4 5 7 t on t off v cc = 300v v d = 15v t j = 25 c t j = 125 c inductive load switching time t on , t off ( s) switching time (t on , t off ) characteristics (typical) collector current i c (a) 10 ? 10 ? 2 3 4 5 7 10 0 2 3 4 5 7 10 0 10 1 23 57 10 2 23 57 10 3 23 57 v cc = 300v v d = 15v t j = 25 c t j = 125 c inductive load switching time (tc (on) , tc (off) ) characteristics (typical) switching time t c(on) , t c(off) ( s) collector current i c (a) t c(on) t c(off) t c(off)
mitsubishi PM300RL1A060 flat-base type insulated package may 2009 8 0 5 10 15 20 25 n-side p-side v d = 15v t j = 25 c t j = 125 c f c (khz) i d vs. f c characteristics (typical) i d (ma) 0 20 60 100 40 80 120 e on v cc = 300v v d = 15v t j = 25 c t j = 125 c inductive load e off collector current i c (a) switching loss characteristics (typical) switching loss e on , e off (mj/pulse) 0 5 10 15 20 050 100 200 300 150 250 350 i rr v cc = 300v v d = 15v t j = 25 c t j = 125 c inductive load t rr diode reverse recovery characteristics (typical) collector reverse current ? c (a) reverse recovery time t rr ( s) reverse recovery current l rr (a) 0 0.1 0.2 0.3 0.4 0.5 0.6 50 100 200 300 150 250 350 0 0 40 80 120 20 60 100 0 7 v cc = 300v v d = 15v t j = 25 c t j = 125 c inductive load collector reverse current ? c (a) switching recovery loss characteristics (typical) switching loss e rr (mj/pulse) 1 2 3 4 5 6 350 050 100 200 300 150 250 0 2 4 6 8 10 12 14 16 18 20 ?0 0 50 100 150 t j ( c) uv trip level vs. t j characteristics (typical) uv t /uv r (v) 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 v d = 15v ?0 0 50 100 150 sc trip level vs. t j characteristics (typical) t j ( c) uv t uv r sc (sc of t j = 25 c is normalized 1)
mitsubishi PM300RL1A060 flat-base type insulated package may 2009 9 23 57 10 ? 23 57 23 57 10 ? 23 57 10 1 23 57 10 0 10 ? 23 57 10 ? 10 ? 10 ? 10 ? 10 ? 5 7 10 0 2 3 5 7 2 3 5 7 2 3 23 57 10 ? 23 57 23 57 10 ? 23 57 10 1 23 57 10 0 10 ? 23 57 10 ? 10 ? 10 ? 10 ? 10 ? 5 7 10 0 2 3 5 7 2 3 5 7 2 3 0 0.5 1.0 1.5 2.0 t j = 25 c 13v v d = 17v output characteristics (typical) collector current i c (a) collector-emitter voltage v ce (v) 15v 0 20 60 100 40 80 120 140 160 180 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 12 13 14 15 16 17 18 i c = 150a t j = 25 c t j = 125 c collector-emitter saturation voltage (vs. v d ) characteristics (typical) collector-emitter saturation voltage v ce(sat) (v) control voltage v d (v) 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 v d = 15v t j = 25 c t j = 125 c collector-emitter saturation voltage v ce(sat) (v) collector-emitter saturation voltage (vs. ic) characteristics (typical) collector current i c (a) 050 100 150 200 v d = 15v t j = 25 c t j = 125 c collector recovery current ? c (a) emitter-collector voltage v ec (v) diode forward characteristics (typical) 10 1 10 0 10 2 5 7 10 3 2 3 5 7 2 3 5 7 2 3 0 0.5 1.0 1.5 2.0 transient thermal impedance characteristics (typical) normalized transient thermal impedance z th(j-c) time t (sec) single pulse igbt part; per unit base = r th(j-c) q = 0.24 c/ w fwdi part; per unit base = r th(j-c) f = 0.39 c/ w transient thermal impedance characteristics (typical) normalized transient thermal impedance z th(j-c) time t (sec) single pulse igbt part; per unit base = r th(j-c) q = 0.15 c/ w fwdi part; per unit base = r th(j-c) f = 0.23 c/ w (brake part)


▲Up To Search▲   

 
Price & Availability of PM300RL1A060

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X